

Mathematics Tutorial Series

Integral Calculus #6

Basic Anti-derivatives

Remember the Table of Key Derivatives:

f	f'
c, constant	0
χ^m	mx^{m-1}
sin x	cos x
cos x	$-\sin x$
tan x	sec ² x
sec x	sec x tan x
e ^x	e ^x
$\log x$	$\frac{1}{x}$
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
tan ⁻¹ x	$\frac{1}{1+x^2}$

Switch the columns.

This becomes a Table of Key Anti-derivatives.

f	Anti-derivative of f
0	c, constant
mx^{m-1}	χ^m
x^m	$\frac{1}{m+1}x^{m+1}$
cos x	sin x
$-\sin x$	cos x
sec ² x	tan x
sec x tan x	sec x
e^x	e ^x
$\frac{1}{x}$	$\log x$
$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1} x$
$\frac{1}{1+x^2}$	tan ⁻¹ x

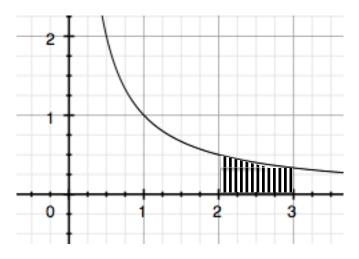
Examples:

1.

$$\int \sec^2 x \, dx = \tan x + c$$

and so

$$\int_0^{\pi/4} \sec^2 x \, dx = \tan \frac{\pi}{4} - \tan 0 = 1 - 0 = 1$$


2.

$$\int \frac{1}{x} dx = \log x + c$$

and so

$$\int_{2}^{3} \frac{1}{x} \, dx = \log 3 - \log 2 = 0.4055$$

This number is the area under the graph of $y = \frac{1}{x}$ between x = 2 and x = 3.

3.

$$\int 1 \, dx = x + c$$

Summary

- 1. A definite integral can be calculated once we have an anti-derivative of the integrand.
- 2. What we know about derivatives can help us construct anti-derivatives.
- 3. $\int f(x) dx$ is a function plus a constant.
- 4. $\int_a^b f(x) dx$ is a number.